On a generalization of transitivity for digraphs

نویسندگان

  • András Gyárfás
  • Michael S. Jacobson
  • Lael F. Kinch
چکیده

In this paper we investigate the following generalization of transitivity: A digraph D is (m, n )-transitive whenever there is a path of length m from x to y there is a subset of n + I vertices of these m +I vertices which contain a path of length n from x toy. Here we study various properties of (m, n )-transitive digraphs. In particular, (m, I)-transitive tournaments are characterized. Their similarities to transitive tournaments are analyzed and discussed. Various other results pertaining to (m, I)-transitive digraphs are given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

More skew-equienergetic digraphs

Two digraphs of same order are said to be skew-equienergetic if their skew energies are equal. One of the open problems proposed by Li and Lian was to construct non-cospectral skew-equienergetic digraphs on n vertices. Recently this problem was solved by Ramane et al. In this  paper, we give some new methods to construct new skew-equienergetic digraphs.

متن کامل

Sufficient conditions on the zeroth-order general Randic index for maximally edge-connected digraphs

Let D be a digraph with vertex set V(D) .For vertex v V(D), the degree of v, denoted by d(v), is defined as the minimum value if its out-degree  and its in-degree . Now let D be a digraph with minimum degree  and edge-connectivity If  is real number, then the zeroth-order general Randic index is defined by   .  A digraph is maximally edge-connected if . In this paper we present sufficient condi...

متن کامل

On Making Directed Graphs Transitive

We present the first thorough theoretical analysis of the Transitivity Editing problem on digraphs. Herein, the task is to perform a minimum number of arc insertions or deletions in order to make a given digraph transitive. This problem has recently been identified as important for the detection of hierarchical structure in molecular characteristics of disease. Mixing up Transitivity Editing wi...

متن کامل

Twin signed total Roman domatic numbers in digraphs

Let $D$ be a finite simple digraph with vertex set $V(D)$ and arcset $A(D)$. A twin signed total Roman dominating function (TSTRDF) on thedigraph $D$ is a function $f:V(D)rightarrow{-1,1,2}$ satisfyingthe conditions that (i) $sum_{xin N^-(v)}f(x)ge 1$ and$sum_{xin N^+(v)}f(x)ge 1$ for each $vin V(D)$, where $N^-(v)$(resp. $N^+(v)$) consists of all in-neighbors (resp.out-neighbors) of $v$, and (...

متن کامل

Independent transversals of longest paths in locally semicomplete and locally transitive digraphs

We present several results concerning the Laborde-Payan-Xuang conjecture stating that in every digraph there exists an independent set of vertices intersecting every longest path. The digraphs we consider are defined in terms of local semicompleteness and local transitivity. We also look at oriented graphs for which the length of a longest path does not exceed 4.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 69  شماره 

صفحات  -

تاریخ انتشار 1988